If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33z+7z^2+10=0
a = 7; b = 33; c = +10;
Δ = b2-4ac
Δ = 332-4·7·10
Δ = 809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{809}}{2*7}=\frac{-33-\sqrt{809}}{14} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{809}}{2*7}=\frac{-33+\sqrt{809}}{14} $
| (18x-6)+(15x+3)=180 | | 7x+15+x+13=180 | | 12r+17=113r | | 6x+15x-12+19x+2=180 | | 6x+22=x-10 | | 8x-23=7x-7 | | -42+5x=57-6x | | 7x+14=5x-26 | | -3x+6(x-15)=-75 | | 4(2x+6)=11x+12-3x+12 | | 16x+3=19x-5 | | -7f+8=-3f-4 | | 96x-24=12(8x-2) | | 2(12+6c)=4(4c+14) | | x=-2/3x+5 | | 8x+27x-5=7(5x+7) | | 10x-7=7x-2 | | 38x+8=38x+94 | | 5x2+23x+24=0 | | -7x-33=-4(x+3) | | 5x+4+5x+4+2x+2x=36 | | 5x+11x-4=4(4x+8) | | (0.2x+3)/((2(3/11)=(1.1x)/(5) | | (0.2x+3)/(23/11)=(1.1x)/(5) | | 5x+2(5x-13)=109 | | 3/4w+43/16w+9=24-1/16ww | | 20x-6=4(5x+3) | | x+4/x=6/5 | | 12r+17=133r | | x^=2−14x−33 | | x+6-8=6 | | 32x+1,928x-16=49(40x+30) |